Exercise 3.3.13

Consider a function $f(x)$ that is even around $x=L / 2$. Show that the even coefficients (n even) of the Fourier sine series of $f(x)$ on $0 \leq x \leq L$ are zero.

Solution

The Fourier sine series expansion of $f(x)$, a piecewise smooth function defined on $0 \leq x \leq L$, is given by

$$
f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L},
$$

where

$$
B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
$$

Replace x with $x+L / 2$ to translate everything to the left by $L / 2$ units.

$$
B_{n}=\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \left[\frac{n \pi}{L}\left(x+\frac{L}{2}\right)\right] d x
$$

Consider the even coefficients by setting $n=2 k$.

$$
\begin{aligned}
B_{2 k} & =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \left[\frac{2 k \pi}{L}\left(x+\frac{L}{2}\right)\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \left(\frac{2 k \pi x}{L}+k \pi\right) d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left(\sin \frac{2 k \pi x}{L} \cos k \pi+\cos \frac{2 k \pi x}{L} \sin k \pi\right) d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)\left[(-1)^{k} \sin \frac{2 k \pi x}{L}+(0) \cos \frac{2 k \pi x}{L}\right] d x \\
& =\frac{2}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right)(-1)^{k} \sin \frac{2 k \pi x}{L} d x \\
& =\frac{2(-1)^{k}}{L} \int_{-L / 2}^{L / 2} f\left(x+\frac{L}{2}\right) \sin \frac{2 k \pi x}{L} d x
\end{aligned}
$$

Note that f is even, and sine is odd. The product of an even function and an odd function is odd, and the integral of an odd function over a symmetric interval is zero.

$$
\begin{aligned}
B_{2 k} & =\frac{2(-1)^{k}}{L}(0) \\
& =0
\end{aligned}
$$

Therefore, the even coefficients in the Fourier sine series expansion of $f(x)$ are zero if f is even with respect to $x=L / 2$.

